
Fuzzy bags and Wilson lines
The pressure, near Tc, as a “fuzzy” bag

1. Helsinki program of resumming perturbation theory

     Non-perturbative terms in the pressure

The sQGP from Wilson lines in weak coupling 

     2. (Some) large gauge transformations.

           Interfaces, Z(N) and U(1), and their uses.

     3. The electric field in terms of Wilson lines.

     4. Confinement as an (adjoint) Higgs effect
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Helsinki Program

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

mDebye2 ~ g2 T2 ,  κ~ g4,  series in g2 .   
        (First step in three: then resum mDebye , mmagnetic )

“Optimal” resummation of perturbation theory: valid for small A0 

How does αseff run?  Braaten & Nieto ’96: αseff(2 π T)?  

Even better!  Laine & Schröder ’05: 2-loop calc. ⇒ αseff(9 T)! 

Tc ~ 175 MeV:  9 Tc ~ 1.6 GeV,    αseff(9 Tc) ~ 0.28 
 
                          9 (3 Tc)~ 4.8 GeV  :  Tc to  ~ 3 Tc not (so) strong coupling

Match original theory in 4D, to effective theory in 3D, for r > 1/T
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αs
eff  is not so big, even at Tc 

αs
eff(c T):  c ~ 2 π → 9.  Might have been 2 π → 2.  

           If so, then strong coupling below 3 Tc .  Not what happens.  

Tc↑
T/Tc →

3Tc↓
αs

eff(T)↑

0.30→
Laine & 
Schröder ’05
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Effective 3D theory works for spatial string tension

Use g3D
2(T) = 4 π αs(T) T, take σspatial/g3D

2 from 3D lattice sim.’s

Compare with direct calc. of σspatial in 4D.
Works down to Tc! Need 2-loop calc. Magnetic sector OK to Tc      

T/Tc →
Tc↑ 5 Tc↑

T/σspatial
1/2 ↑
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4d lattice data

interpolation

Pressure: effective theory fails below ~ 3 Tc

p(T)/T4 ↑
      Eff thy: grey band

Points: lattice.

log(T/ΛMS bar)→

If αs
eff is not so big, why doesn’t effective thy work for the pressure?
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 Old story: Lattice pure SU(3) glue, (e-3p)/T4

←(Ls)3 x Nt: 

Ls = # spatial lattice spacings

Nt = # time steps

Pure glue: Nt = 6,8 close to

 continuum limit

←Perturbative

    cont. ~ αs
2

←:  ~1/T2!   →

e = energy
p = pressure

(e-3p)/T4 ↑

Trace of
energy - mom.       

tensor/T4  ↑

Bielefeld,
lat/9602007

1.1 Tc↑ 4 Tc↑
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e − 3p

T 2
↑

T/Tc →

Now plot (e-3p)/T4 times T2:
constant from 1.1 Tc to 4 Tc!

So p(T) = sum of only T4, T2  
Since p(Tc) is small, for pure glue:

“Fuzzy” bags

With dynamical quarks: maybe for T> Tc, pressure a series in 1/T2:

Only perturbative terms contribute to fpert(g2): probably works down to Tc !
Bfuzzy “fuzzy” bag constant: dominates MIT bag constant, BMIT away from Tc

“Failure” of pert. thy because of non-perturbative terms, powers in 1/T2

p(T ) = fpert T 4
− Bfuzzy T 2

− BMIT + . . .

p(T ) ≈ fpert(T
4
− T 2

c T 2)
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Effective theory near Tc

Could use eff. thy. of local quasiparticles...  
Or use (natural) nonlocal variable, thermal Wilson line.  Start with straight lines:

Under gauge transformations,

For periodic Ω(τ), traces are gauge invariant.
Polyakov loop: measures fraction of deconfinement.

Can extract renormalized Polyakov loop from lattice, after removing 
lattice “mass” renormalization.  (Kaczmarek + ...’02....Orginos et al ‘03).

Perturbative regime: complete deconfinement. Loop near one, g A0/T small.

Non-perturbative regime: partial deconfinement.  Loop < 1, so g A0/T large.

!(x) = tr L/3

τ ↑L(x) = P e
ig

∫ 1/T

0

A0(x, τ) dτ

L(x) → Ω(x, 1/T )† L(x) Ω(x, 0)
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“sQGP”:  partially deconfined
From ren.’d Polyakov loop on lattice:
      T > 3 Tc : loop ~ 1, ~ perturbative QGP
      Tc → 3 Tc : loop < 1, partial deconfinement, “sQGP”  

Ren’d
triplet
loop ↑

T/Tc → 

Heavy quark free energies and the renormalized Polyakov loop in full QCD 7
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Fig. 6. The renormalized Polyakov loop in full QCD compared to the quenched results1) .

will do so by renormalizing the free energies at short distances. Assuming that no
additional divergences arise from thermal effects and that at short distances the
heavy quark free energies will not be sensitive to medium effects, renormalization is
achieved through a matching of free energies to the zero temperature heavy quark
potential. Using the large distance behavior of the renormalized free energies we
can then define the renormalized Polyakov loop which is well behaved also in the
continuum limit.

Using the renormalized free energies from fig. 3, i.e. the asymptotic values in
fig. 5, we can define the renormalized Polyakov loop1) ,

Lren = exp

(

−
F1(r = ∞, T )

2T

)

. (4.1)

In fig. 6 we show the results for Lren in full QCD compared to the quenched
results obtained from Ref. 1). In quenched QCD it is zero below Tc by construction,
as the free energy goes to infinity in the limit of infinite distance. From the results of
different values of Nτ , it is apparent that Lren does not depend on Nτ and therefore
is well behaved in the continuum limit.

The renormalized Polyakov loop in full QCD is no longer zero below Tc. Due to
string breaking the free energies reach a constant value at large separations leading
to a non-zero value of Lren. The renormalized Polyakov loop is no longer an order
parameter for finite quarks mass, but still indicates a clear signal for a phase change
at Tc. It is small below Tc and shows a strong increase close to the critical tem-
perature. In the temperature range we have analyzed, Lren is smaller in full QCD

←pure glue, no quarks

←with quarks,
 ~ QCD

←  Confined  →←            sQGP             →←  pQGP →   

←Tc ~3Tc → 

1

2
→

1 → 

Petrecsky & Petrov ‘04
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Lattice SU(3): Ren’d Loops

Renormalized triplet Polyakov loops, Tc to 3 Tc.  Agree to ~ 10%
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Kaczmarek, Karsch, 
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Dumitru, Hatta, Lenaghan, 
Orginos, & R.D.P.  ‘03
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Lattice SU(3): ren’d triplet loop, with dynamical quarks.  Petreczky & Petrov ‘04
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Effective theory for large A0

Symmetries?  Certainly, invariance under static gauge transf.’s.
Plus: “large” gauge transformations - spatially constant, time dependent.  For SU(N):

This Uc(τ) is only valid c/o quarks: Uc(1/T) = exp(2 π i/N) Uc(0) 
    Shows center symmetry of pure SU(N) glue: a global Z(N) symmetry

With quarks?  Consider Uc(τ) to Nth power!  Uc(1/T)N = exp(2 π i)Uc(0)N =  1.

All theories must respect invariance under such strictly periodic gauge transf.’s.
     For any gauge group, with any matter fields.
     With center symmetry, or not.  Even for QED.

Strictly periodic, but large gauge transf.’s place nontrivial constraints on a
nonabelian effective theory.

U c(τ) = e
2πi τT tN/N , tN =

(

1N−1 0
0 −(N − 1)

)
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Z(N) interfaces 
One way to probe large A0: Z(N) interface related to gauge transformation, Uc(τ)
Take a long box:

Take A0 ~ tN, times “coordinate” q(z).
Even at large A0, the (original) electric field is abelian: Ei4D ~ ∂i A0 ~ dq/dz.  
Leff = classical + 1 loop potential, for constant A0

〈L〉 = 1

〈L〉 = e
2πi/N

1

z

Usual tunneling problem: action ~ transverse area  × # T2/(3√g2) 
Interface “fat”: width ~ 1/(gT), so can use derivative expansion.
# = 4 π2 (N-1)T2/ √(3N). Compute semiclassically, now (√g2 )3 × #  Korthals Altes

Leff = trE2

i /2 + V1 loop(A0) ∼ #(1/g2(dq/dz)2 + q2(1 − q)2)

A0 =
2πT

gN
q(z) tN
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U(1) interfaces 
What if no center symmetry?   QCD: SU(3) with dynamical quarks, G(2)...
Use “U(1)” interface for strictly periodic gauge transf. In QCD, Uc(τ)3

Red: potential for constant A0 from SU(3) gluons
For integer q, <L> = exp(2 π i q/3) 1.  q = 0, 1, 2 are degenerate Z(3) vacua.

Blue: potential from quarks.  Potential at q = 1, 2 ≠ q = 0 , 3: no Z(3) symmetry
     Still have U(1) interface: <L>: 1 → 1, but q(z): 0 →3.

Use U(1) interfaces to probe large A0 .  Properties gauge invariant, physical.
Associated with U(1) topology in maximal torus.

q→
1 2 30

V(A0)↑
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Effective electric field?

Want 3D effective thy. for large A0 ~ T/g.
Valid for r > 1/T, so A0 varies slowly in space, momenta p < T .

Original electric field Ei4D = Di A0 - ∂0 Ai .  So Ei3D = Di A0 ?

For large gauge transf. Uc(τ)N = exp(2 π i T τ tN):

Constant shift in A0 , time dependent rotation of Ai .   

Di A0 = (∂i  -  i g [Ai ,) A0  not invariant if  [Ai , tN] ≠ 0. 
Of course, Ei4D  invariant under Uc(τ) .

Ei3D =  Di A0  at small A0, but not at large A0!  Diakonov & Oswald ’03, ’04

      Form Ei3D from Wilson lines?

Adiag
0

→ Adiag
0

+
2πT

g
tN , Ai →

1

−ig
Ω†

c(τ)Ai Ω(τ)
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Electric field of Wilson lines

Wilson line SU(N) matrix, so diagonalize:

Static gauge transf.’s: diagonal matrix λ invariant, Ω changes.

Strictly periodic Uc(τ)N :  λa → λa + 2 π × integer: λa  periodic.  Of course!

Use just eigenvalues, Ei3D ~ ∂i λ?  No, Ei3D ≠  Di A0 at small A0

Ei3D hermitean, so:

Small A0 OK, but does not fix c1, c2...

Large but abelian A0, Ai = 0: if Ei3D = ∂i A0,  must have c1=c2=...=0. 

Necessary for interfaces to match at leading order.  Beyond: c1, c2 ... ~ g2. 

In general, infinite number of terms enter.  
       Calculable perturbatively, match through interfaces, Z(N) or U(1).

L(x) = Ω(x)†e iλ(x) Ω(x)

E3D
i (x) =

T

ig
L
†(x)DiL(x)(1 + c1|trL|

2 + . . .)
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Leff of Wilson lines at 0th order

To leading order, 

Gauge covariant “average” in time: 

Math.’y: left invariant one form (Nair).

Lagrangian continuum form of 
Banks and Ukawa ’83,  on lattice:

To 0th order, Lagrangian for SU(N) principal chiral field.  
Non-renormalizable in 3D, but only effective theory for r > 1/T.

Instanton number in 4D = winding number of L in 3D
Linear model: Vuorinen & Yaffe ‘06

E3D
i =

T

ig
L
† Di L

Leff
cl =

1

2
trG2

ij +
T 2

g2
tr |L†DiL|

2

L(τ) = e
ig

∫
τ

0
Ao(τ ′)dτ ′

; L = L(1/T )

E3D
i /T =

∫ 1/T

0

dτ L(τ)† ∂iA0(τ) L(τ) − L
†[Ai,L]
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Confinement & adjoint Higgs phase?

Diagonalize L = Ω† e i λ  Ω  
Static gauge transf.’s U: e i λ  invariant, Ω not:

Electric field term:

1st term same as abelian
2nd term gauge invariant coupling of electric & magnetic sectors

<e i λ > = 1: no Higgs phase.  True in perturbation theory, order by order in g2

If <e i λ > ≠ 1, Higgs phase,
In weak coupling, diagonal gluons massless, 
off diagonal massive (a,b = 1...N)

But for 3D theory, gluons couple strongly.  Effects of Higgs phase?

N.B.: above ‘t Hooft’s abelian projection for Wilson line.

Ω → ΩU , Di → U
† Di U

m
2

ab = g
2|eiλa − e

iλb |2

tr |L†DiL|
2 = tr (∂iλ)2 + tr |[Ω Di Ω†, eiλ]|2
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How to tell if adjoint Higgs phase?

No absolute, gauge invariant measure.  Only differences qualitative.
But: usually magnetic glueballs and Wilson line mix very little.
Higgs phase should strongly mix glueballs and Wilson line.
Measure magnetic glueballs not from usual spatial plaquettes,
but plaquettes “split” in time.

τ ↑  
            r→

Usual spatial plaquette

τ = 0

τ = 1/T

“Split” spatial plaquette 
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Loop potential, perturbative & not.

Leff
1 loop = −

2 T 4

π2

∞∑

m=1

1

m4
|trLm|2 .

U(N): constant L, 1 loop order:

Perturbative vacuum <e i λ > = 1,
stable to leading order, any finite order in g2 . 

Can compute corrections to effective Lagrangian at next to leading order, NLO.
At NNLO, ~ g3  , need to resum mDebye .  Eventually, mmagnetic

SU(3) lattice: near Tc , pressure(T) ~ T4 and  ~T2 .

To represent: add, by hand:

Bf ~ # Tc2 “fuzzy” bag const.  Non-pert., infinity of possible terms.

Bf ≠ 0 ⇒ <e i λ > ≠ 1 ⇒ Higgs phase near Tc

                                             

Leff
non−pert.(L) = + Bf T

2 |trL|2
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(Dynamical) eigenvalue repulsion
SU(N): “Center symmetric” confined vacuum:

All Z(N) charged loops vanish:

Pressure < 0!  Pressure(Lc) ~ 1, not N2 => Confined vacuum at N=∞

At N = ∞, total eigenvalue repulsion.  How is it generated dynamically?  

Small volume: Vandermonde det. in measure ~ random matrix model: Aharony...

Large volume: kinetic terms of Higgs modes in adjoint Higgs phase? 

One loop:

Could study numerically.  “Not so random” matrix model.

Lconf = diag(1, z, z
2
. . . z

N−1) , z = e2πi/N
.

〈trLj
conf

〉 = 0 , j = 1 . . . (N − 1)

Leff
1 loop ∼ −

N∑

a,b=1

(g2|eiλa − e
iλb |2)3/2
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Fuzzy bags and Wilson lines: credits
1. Helsinki program & renormalized loops
     Resummation: Braaten & Nieto ’96.   Andersen & Strickland ’04.
           Kajantie, Laine, Rummukainen, & Schröder ’00, ’02, & ’03.
           Giovannangeli ’05.   Laine & Schröder ’05 & ’06.  Di Renzo, Laine +... ’06
      Renormalized loops: Kaczmarek, Karsch, Petreczky, & Zantow ’02  Dumitru, Hatta... below.
            Petreczky & Petrov ’04.   Gupta, Hubner, & Kaczmarek ’06

2. (Some) large gauge transformations
      Large gauge transf.’s: Diakonov & Oswald ’03 & ’04.  Megias, Ruiz Arriola, & Salcedo ’03.
      Center symmetry, G(2): Holland, Minkowski, Pepe, & Wiese ’03.  Pepe & Wiese ’06.
      Z(N) interfaces: Korthals-Altes et al ’93, ’99, ’01, ’02, ’04

3. The electric field in terms of Wilson lines
 Before: RDP ’00. Dumitru & RDP ‘00-’02. Dumitru, Hatta, Lenaghan, Orginos & RDP ’03

      Small sphere: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk ’03 & ‘05
      Matrix models: Dumitru, Lenaghan, & RDP ’04.  Oswald & RDP ’05.
      Linear model: Vuorinen & Yaffe ’06.  Today: RDP ’06.
      Lattice action: Banks & Ukawa ’83.  Bialas, Morel, & Petersson’04.   

4. Confinement as an (adjoint) Higgs effect
      Center symmetric vacuum: Weiss ’82.   Karsch & Wyld ’86.  Polchinski ’91.  Schaden ’04.
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